Chinese Remainder Theorem Proof

Chinese Remainder Theorem Proof

\[\begin{cases} x & \equiv a \text{(mod m)} \\ x & \equiv b \text{(mod n)} \end{cases}\] \[\begin{align*} \text{gcd}(m,n) &= 1 \\ \Rightarrow 1 &= mv+nw \text{ (1)} \\ nw &= 1 - mv \text{ (3)}\\ x& = b+nj\text{ (2)} \end{align*}\] \[\begin{align*} b+nj \equiv a\text{ (mod m)} \Rightarrow b+nj &= a + mk\\ nj &=a-b+mk \end{align*}\]

From(1):

\[n^{-1} =w\]

Hence:

\[j=w(a-b)+mkw\]

Substitution to (2) gives us:

\[\begin{align*} x &= b+n\left[w(a-b)+mkw\right]\\ &=b+nwa-nwb+mnkw\\ &=nwa+mvb+mnkw\\ \end{align*}\]

𐬽 \(x\equiv nwa+mvb\text{ (mod mn)}\)

Written on May 16, 2019